DISTRIBUTION OF INDOOR RADON MEASUREMENTS IN CARSON CITY, WASHOE, STOREY, LYON, AND DOUGLAS COUNTIES, NEVADA

L. G. Christensen
G. L. Johnson
D. D. La Pointe
J. G. Rigby
J. G. Price

This information should be considered preliminary. It has not been edited or checked for completeness or accuracy.
DISTRIBUTION OF INDOOR RADON MEASUREMENTS IN CARSON CITY, WASHOE, STOREY, LYON, AND DOUGLAS COUNTIES, NEVADA

Authors:
L. G. Christensen
G. L. Johnson
D. D. La Pointe
J. G. Rigby
J. G. Price

Indoor radon concentration measured in picocuries of radon per hour of air (pCi/L):
- Radon concentration equal to or greater than 20 pCi/L
- Radon concentration between 10.0 and 19.9 pCi/L
- Radon concentration between 4.0 and 9.9 pCi/L
- Radon concentration between 2.0 and 3.9 pCi/L
- Radon concentration between 0.0 and 1.9 pCi/L

Notes:
- 671 indoor radon measurements are represented on this map.
- 128 measurements from basements and crawl spaces
- 531 measurements from ground floors
- 12 measurements from second floors

This map shows the distribution of indoor radon measurements of 671 homes tested in western Nevada. The study area covers 30% of Carson City, Washoe, Storey, Lyon, and Douglas Counties. All radon 87Ar alpha measurements were obtained using two- to seven-day charcoal canister tests in three separate surveys conducted from 1989 through 1992, followed by individual home tests using two- to seven-day charcoal canister samples through January 1995. All radon concentrations used met the requirements of EPA's Radon Measurement Proficiency (RMP) program. Individual measurements are divided into five categories of indoor radon concentrations:
 - Radon concentration equal to or greater than 20 pCi/L
 - Radon concentration between 10.0 and 19.9 pCi/L
 - Radon concentration between 4.0 and 9.9 pCi/L
 - Radon concentration between 2.0 and 3.9 pCi/L
 - Radon concentration between 0.0 and 1.9 pCi/L

This map was made on the lowest habitable floor. If more than one measurement was made in that home, the test with the greatest radon concentration from the lowest habitable floor is shown on the map.

The indoor radon measurements were derived from a variety of studies in the Carson quill as long as homes, basements, crawl spaces, and attics, but generally not kitchens, laundry rooms, or bathrooms.

Radon Is a colorless, odorless radioactive gas that comes from the natural decay of uranium, and is found in small amounts in nearly all rocks and soils. It enters homes through cracks and joints in the foundation, construction joints, or any other fissures in the wall or floor. Once inside a home, it can build up to concentrations high enough to cause exposure to radon. Radon is the second leading cause of lung cancer over a prolonged period of exposure. The EPA suggests that residents should be concerned to radon in any home with widespread annual indoor radon concentrations of 4,000 picocuries per liter (pCi/L) or more. Indoor radon concentrations can vary day to day and season to season, and as a result, it's not easy to predict exactly when radon levels will be high. To learn more about radon, visit the website of the Environmental Protection Agency (EPA) at the following address: [EPA Radon](https://www.epa.gov/energy/radon).

For more information on indoor radon concentrations in Nevada, consult the Nevada Department of Health and Human Services, Division of Health, and the Nevada Bureau of Mines and Geology. For more information on indoor radon, call the Nevada Bureau of Mines and Geology at (702) 784-8091. For more information on indoor radon in California, contact the Division of Health, California Department of Health, or call (916) 322-3200.