MINERAL RESOURCES OF THE OVERTON 30' BY 60' QUADRANGLE

Joseph V. Tingley

Prepared in cooperation with the U.S. Geological Survey

A summary of the mineral resources of the Overton 30' by 60' Quadrangle including mining history and geologic setting; descriptions of mines, prospects, and occurrences of metallic and nonmetallic minerals and geothermal resources; and results of geochemical analyses. A 1:100,000-scale map showing the locations of the occurrences is included.

1989
NEVADA BUREAU OF MINES AND GEOLOGY
Jonathan G. Price, Director/State Geologist

SCIENTIFIC RESEARCH STAFF
MINERAL RESOURCES AND GEOCHEMISTRY
Harold F. Bonham, Jr., Research Geologist
Stephen Castor, Industrial-Minerals Geologist
Patrick Goldstrand, Graduate Research Assistant
Larry J. Garside, Research Geologist
Liang-Chi Hua, Geochemist
Richard B. Jones, Metal-Resources Geologist
Daphne D. LaPointe, Research Geologist
Paul J. Lechler, Chief Chemist/Geochemist
Lawrence Davis, Mineral Preparation Shop Mechanic
Mario Desilets, Assistant Chemist
Bret Pecoraro, Laboratory Assistant
Joseph Y. Tingney, Economic Geologist

ENVIRONMENTAL, ENGINEERING, AND URBAN GEOLOGY
John W. Bell, Engineering Geologist
Craig M. dePolo, Research Geologist
Thomas P. Lugaski, Research Geologist
Alan R. Ramelli, Research Geologist
James G. Rigby, Engineering Geologist

GEOLOGIC INFORMATION
Kerry Fleming, Geologic Computer Specialist
John Taylor, Graduate Research Assistant
Ron Hess, Geologic Information Specialist
Becky S. Weimer, Geologic Information Specialist

ADMINISTRATIVE AND SUPPORT STAFF
PUBLICATION SUPPORT
Rayette Buckley, Word Processing Supervisor
Richard Meeuwis, Publications Editor
Susan L. Tingley, Publications Manager/Cartographer
Larry Jacox, Geologic Cartographer
Kris Pizarro, Geologic Cartographer
Matt A. Stephens, Publication Technician

ADMINISTRATION, CLERICAL SUPPORT, AND PUBLICATION SALES
Ann E. Dabec, Management Assistant
Dorene E. Camp, Receptionist
Brenda E. Craig, Account Clerk
Ariana Kramer, Sales Manager

Editing: Dick Meeuwis
Graphics: Larry Jacox
Typesetting:
By: Rayette Buckley
At: Nevada Bureau of Mines and Geology
On: Computer Graphics Writer 7710
Heads: Univers Bold II, 10 pt.
Photos: Rayette Buckley

Printing:
First edition, first printing, 1989
Copies: 1000
By: Cal Central Press
2001 Timset Way, Reno, Nevada
Stock, cover: Speckletope French by Zellerbach, Kyone Stone, 80 lb.
Stock, text: Cascade White Offset, 80 lb.
Ink, cover: Pantone 201
Binding: saddle stitch

For sale by the Nevada Bureau of Mines and Geology, University of Nevada-Reno, Reno, NV 89557-0088. Price________
MINERAL RESOURCES OF THE OVERTON
30' BY 60' QUADRANGLE

INTRODUCTION

The Overton 30' by 60' Quadrangle is in northeastern Clark County and southeastern Lincoln County about 50 miles northeast of Las Vegas. The quadrangle extends from Coyote Spring Valley past the Arizona state line and includes portions of the Las Vegas and Arrow Canyon Ranges and the Meadow Valley, North Muddy, Mormon, East Mormon, and Virgin Mountains. The east central portion of the quadrangle is occupied by Mormon Mesa and the broad valleys of the Muddy and Virgin Rivers. Lake Mead National Recreational Area extends up the Virgin River into the southern part of the quadrangle. The Moapa River Indian Reservation, extending from the Muddy River southwestward along the front of the Arrow Canyon Range, is mostly within the quadrangle. Part of the Desert National Wildlife Range occupies a narrow strip along the western boundary of the quadrangle.

The valley of the Virgin River, which passes through the southeastern part of the quadrangle, was traveled perhaps as early as 1776 by Spanish missionaries and explorers (Hulse, 1981, p. 31-32). First known as the Spanish Trail, then the San Bernardino-Salt Lake Wagon Road, the route entered what is now Nevada near present-day Mesquite, passed through Las Vegas, and entered California near the southwest end of Pahrump Valley. Jedediah Smith trapped along the Virgin River part of the old trail in 1826-27 and Fremont traveled the route eastward from California in 1844. Mormons settled in the Moapa (Muddy River) Valley in 1864, were recalled to Salt Lake in 1871 (Thompson and West, 1881, p. 496), but returned to the Moapa Valley in 1880. In the meantime, the town of Bunkerville, on the Virgin River near the east edge of the quadrangle, was settled by farmers in 1877 (Paher, 1970, p. 288).

The first mining activity recorded within the quadrangle was in the late 1890's when the Copper King (Bunkerville) district was organized in the Virgin Mountains south of Bunkerville. Copper discoveries there later developed into the Key West and Great Eastern mines. Shortly after 1900, nickel and platinum were discovered in ores from the Key West mine but production of copper, nickel, and platinum from the district has been minimal. The Whitmore copper deposit in the Mormon Mountains was discovered in 1899 (Shaw and others, 1988, p. 4) and a small amount of copper and silver was produced from this property in 1908. Gypsum deposits near Moapa were worked between 1919 and 1923 by the White Star Plaster Co. (Vanderburg, 1937, p. 56) and gypsum is currently being produced from the same general area for use in wallboard by Georgia-Pacific Co. (S. B. Castor, personal commun., 1988). Silica has been produced from the Tiffany mine in the Arrow Canyon Range but production has been small and intermittent (Longwell and others, 1965, p. 209). Significant amounts of silica have been produced from recent deposits of eolian sand in the Overton area and one of these deposits is currently in production. Large reserves of magnesite are reported in an area west of Overton (Hewett and others, 1936, p. 119) but only small amounts have been mined.
The only known geothermal resources within the quadrangle are several warm springs and wells in Moapa Valley and Virgin Valley.

There has been oil exploration within the quadrangle and several deep test holes have been drilled. No shows of oil and gas have been reported, however.

Descriptions of the geology of the Clark County portion of the quadrangle are found in the publication by Longwell and others (1985). The geology of the part of the quadrangle in Lincoln County is described in Tschanz and Pampeyan (1970).

In 1983, the Nevada Bureau of Mines and Geology completed mineral inventory studies of the Stateline and Caliente Resource Areas for the Bureau of Land Management. As part of these two projects, major mines and prospects in the Overton Quadrangle were examined and sampled. Field data were collected by J. Bentz, P. Smith, and J. V. Tingley. In 1987 a cooperative program was begun with the Branch of Western Regional Geology, U.S. Geological Survey, to complete mineral inventory studies in a number of 30' by 60' quadrangles in southeastern Nevada. The inventory of the Overton Quadrangle is the second of these studies to be completed. Field examinations for this study were carried out by J. V. Tingley in 1987.

Samples were selected from dumps and mineralized outcrops to examine trace element associations. Sample descriptions and results of geochemical analyses are in appendix A and B. The samples are high grade and do not represent average ore grades. The U.S. Geological Survey Branch of Geochemistry performed the geochemical analyses as part of a cooperative agreement with the Nevada Bureau of Mines and Geology.

The information in this report draws from all known previous sources and is intended to be a compilation of data on mines, prospects, and mineral and geothermal occurrences within the Overton 30' by 60' Quadrangle. When information sources are cited, the first source listed has provided the primary information. The information presented has been adjusted to reflect field observations. This report was reviewed by Gary Dixon, Larry Garside, and Stephen Castor.

GEOLeGIC SETTING

Rocks within the Overton Quadrangle range in age from Precambrian through Quaternary. Metamorphic rocks of Precambrian age crop out along Black Ridge, Bunkerville Ridge, and Whitney Ridge in the Virgin Mountains; along the eastern flank of the East Mormon Mountains; and in isolated patches in the southern and western parts of the Mormon Mountains. These rocks, of Early Proterozoic age (dated at 1,740 ± 25 Ma), are the oldest rocks in Nevada (Stewart, 1980, p. 9). They consist of medium- to high-grade meta-sedimentary gneiss and schist and lesser amounts of marble associated with gneissic granite, pyroxenite, hornblendite, pegmatite (Stewart, 1980, p. 9).

Paleozoic sedimentary rocks are present in most of the ranges in the quadrangle and, although complexly folded and faulted in places, most outcrops display north-trending strikes and east or west dips. In the Mormon and East Mormon Mountains the Paleozoic rocks occur as thrust or detachment fault sheets or gravity slides which have overridden Precambrian rocks; similar relationships may also be present in the Virgin Mountains. Triassic and Jurassic sedimentary rocks consisting of the Chinle and Moenkopi Formations and the Aztape Sandstone crop out along the north-trending Muddy Mountains and on the southern part of Whitney Ridge in the southern Virgin Mountains.

Tertiary sedimentary rocks form extensive outcrops along the margins of basins in the central part of the quadrangle. The buff-colored beds characteristic of the fine-grained facies of these sediments are widely exposed in badlands along both sides of Moapa Valley, in the high bluffs bounding Mormon Mesa, in outcrops along Meadow Valley Wash, and along both sides of Virgin Valley (Longwell and others, 1966, p. 48-49; Bohannon, 1984, p. 56-59). A thin veneer of Tertiary volcanic rocks caps older rocks in Meadow Valley Wash and on deposits of the central and northern Meadow Valley Mountains (G. L. Dixon, written commun., 1988).

Older Quaternary gravels cap Mormon Mesa and commonly occupy the area extending from the Tertiary rocks in the lower valleys to pre-Tertiary outcrops on the flanks of the ranges.

With the exception of dikes and sills in the Precambrian rocks of the Virgin Mountains, the only intrusive rock present in the quadrangle is a small granitic body that crops out near the Whitmore mine in the Mormon Mountains. Shaw and others (1988, p. 5) indicate that the granitic rock is of Precambrian age but, on page 1 of the same publication, they state that igneous rocks intruded the core of the Mormon Mountains sometime in Mesozoic to Tertiary time. It is possible, therefore, that the granite in the Mormon Mountains is much younger than the enclosing Precambrian metamorphic rocks.

METALLIC OCCURRENCES

BUNKERVILLE MINING DISTRICT

The Bunkerville mining district, Clark County, is in the southeastern corner of the quadrangle. The district extends from the Virgin River to the Arizona state line on the east and to the quadrangle boundary on the south.

Copper ore was discovered in the western part of the district in the 1890's and the ores were later found to contain nickel and small amounts of platinum. Minor amounts of copper-nickel ore were produced in the district between 1908 and 1916 and again in 1929. Both tungsten ore and mica have been mined from small deposits located in the rough terrain north of Virgin Peak in the eastern part of the district. Beryllium minerals occur in these deposits.

All of the mineral deposits in this district are related to or occur in Precambrian rocks. Tungsten-beryllium-mica deposits occur in a belt that extends from the Arizona border southwest for approximately 1½ miles. The deposits are associated with pegmatite dikes, hornblendite sills and dikes, and quartz veins that follow the general northeast structural and foliation trend in Precambrian garnet-mica schist. In the western part of the district, copper-nickel-bearing sulfides occur as veinlets and disseminations in hornblendite dikes that cut Precambrian granodiorite gneiss.

Black Ridge prospects (1)

Commodity: copper(?)

Location: sec. 35, T15S, R69E

UTM*: 4051740N 745680E

Production: none

Development: several bulldozer trenches and cuts

Geology: Bulldozer cuts expose pink orthoclase-quartz pegmatite lenses in gneiss and gneissic schist; lenses strike N20° to 40°W and dip to the southwest. A trench along the top of a northeast-trending ridge exposes an iron-oxide-stained, quartz-rich pegmatite

*Universal Transverse Mercator, zone 11 (meters)
with minor copper-oxide staining; the copper-stained pegmatite is 1 to 3 inches thick, follows gneissic banding that trends N15° to 20°E and is nearly vertical. The orthoclase-rich pegmatite lenses crosscut the gneissic banding.

Field examination: J. V. Tingley, 1987

Blue Bell prospect (2)
Commodities: copper and nickel
Location: sec. 15, T15S, R70E
UTM 4057350N 754280E
Production: none
Development: a cut and a 40-foot-deep inclined shaft
Geology: A N80°E-striking, 70°SE-dipping white quartzfeldspar pegmatite occurs in amphibolite schist; pegmatite is lenticular, 2 to 3 feet thick, and has green copper-oxide staining near each wall.

Field examination: J. V. Tingley, 1987

Great Eastern mine (3)
Commodities: nickel, copper, and platinum
Location: sec. 14, T15S, R70E
UTM 4056900N 754300E
Production: small
History: The deposits were discovered in about 1902 by S. W. Darling and A. M. Thompson (Averett, 1962), explored in 1936–37 by International Smelting and Refining Co., and investigated by the USBM in 1939–41.
Development: three adits with limited underground workings, all now caved
Geology: The country rock at the Great Eastern mine consists of granodiorite gneiss that has been intruded by hornblendeite and pegmatite dikes. These dikes and related sulfide mineralization occur along a northeast-trending fault zone that extends onto the property from the nearby Key West mine. This structure, termed the Great Eastern dike, is a normal fault in the upper part of the Key West thrust fault, a large northeast-trending reverse fault that lies along the northern flank of the Virgin Mountains. Nickel-bearing sulfides are presumably associated mainly with pyrrhotite in hornblendeite although pyrite and chalcopyrite may also contain some nickel.
Sources of information: Beal (1965, p. 61–63); Averett (1962, p. 48)
Field examination: J. Bentz and P. Smith, 1983; J. V. Tingley, 1987

Hodges-Whorton mine (4)
Commodity: tungsten
Location: sec. 23, T15S, R69E
UTM 4055360N 745590E
Production: several units WO3
Development: A steep bulldozer road leads to a cut, 30 feet long by 20 feet wide along strike; an adit extends about 5 feet beyond the end of the cut.
Geology: The mine workings follow a 4- to 6-inch-wide quartz vein which has formed along foliation planes in a garnet-biotite gneiss; the vein is lenticular and pod-like, strikes N40°E, and dips 65° to 70°SE. The vein is iron-oxide stained, contains sparse but coarse-grained scheelite; the scheelite is blue-white under fluorescent light. The gneiss is laced with quartz-rich pegmatite dikes up to 2 feet thick; the dikes have euhedral garnet crystals along their contacts with gneiss and also contain some pink orthoclase.
Remarks: The property is at the summit of a northwesterly trending spur of Black Ridge and can be reached only by a steep bulldozer road.
Source of information: Stager and Tingley (1988, p. 43)
Field examination: J. V. Tingley, 1987

Kathleen prospect (5)
Commodities: copper and silver(?)
Location: sec. 17, T16S, R71E
UTM 4047600N 760880E
Production: none
Development: one adit 40 feet long, bearing N80°W
Geology: The adit is collared in Precambrian schist; the schist foliation strikes northerly and dips 60° to 20°W. White quartz lenses, which formed along foliation planes in the schist, show hematite staining but no other obvious mineralization.
Source of information: Hose and others (1981)
Field examination: J. V. Tingley, 1987

Key West mine (6)
Commodities: nickel, copper, and platinum
Location: sec. 21, T15S, R70E
UTM 4056040N 753450E
Production: small tonnage, 1908–1932
History: The mine was discovered in the late 1890's and explored for copper and nickel between 1900 and 1903; most work on the property was done in 1901

Open pit at the Key West mine, Bunkerville district. P. Smith photo.
but some additional work was done between 1903 and 1916, in 1929, and in 1952.

Development: Workings consist of an open pit and numerous adits, drifts, stopes and shafts; most underground workings are now inaccessible.

Geology: Precambrian granodiorite gneiss and schist are intruded by hornblendite dikes and plugs and by aplite and pegmatite dikes. Copper-nickel mineralization is associated with a lenticular hornblendite body which follows a steeply dipping fault zone that strikes N70°E, mineralization occurs disseminated in the hornblendite, along the fault zone, and in several small pods and lenses northwest of the main fault zone. Ore minerals include chalcopyrite, pyrite, pyrrhotite, magnetite, pentlandite, azurite, malachite, and cuprite. Associated minerals include apatite, epidote, limonite, carbonates, quartz, and clay. The Key West thrust fault underlies the mine area at a depth of approximately 450 feet.

Remarks: 31,000 tons of ore developed at the mine averaged 2.5 percent copper, 1.9 percent nickel, and 0.14 ounces platinum per ton. The deposit has a resource potential of a few thousand ounces of platinum.

Source of information: Beal (1965, p. 63–76)

Field examination: J. Bentz and P. Smith, 1983; J. V. Tingley, 1987.

Ranch View prospects (7)

Commodities: copper and silver

Location: sec. 22, T16S, R71E

UTM 4046300N 763490E

Production: none

Development: Workings consist of several prospect pits: the largest, on the southeast, is 6 by 6 by 10 feet deep; the next largest, 150 feet to the northwest, is 6 by 10 by 4 feet deep.

Geology: Pits are along lenticular quartz veining that strikes N30° to 40°W in a lense of gneissic rocks enclosed in Precambrian granite. Unaltered Paleozoic limestone crops out a few feet upslope northeast of the prospects. The lense of metamorphic rocks and the enclosed veining dip 70° to 80°SW. No mineralization was noted except iron-oxide staining. The vein material is vuggy and the vugs are filled with iron-oxide gossan.

Source of information: Hose and others (1981)

Field examination: J. V. Tingley, 1987

Roadside prospect (8)

Commodities: copper and silver

Location: sec. 17, T16S, R71E

UTM 4047400N 761700E

Production: none

Development: shallow location trenches

Geology: Coarse-grained Precambrian granite with pink orthoclase feldspar is exposed in the trenches; no metallic mineralization was noted.

Source of information: Hose and others (1981)

Field examination: J. V. Tingley, 1987

Silver Leaf mine (9)

Other names: Tri-State mine, Walker mine, Mesquite mine, Dear Trail mine, Cabin Canyon mine, and Silver mine

Commodity: tungsten

Location: secs. 16 and 17, T15S, R71E

UTM 4058155N 761450E

Production: small

History: production period 1953–57

Development: Workings consist of open cuts, trenches, and over 1,000 feet of drifts, raises, and stopes, all now inaccessible.

Geology: The mine workings explore hornblendite dikes in Precambrian schist. The dikes contain lenses of quartz containing pyrite and scheelite. The richest concentrations of scheelite occur in quartz lenses, veinlets, and veins in the sheared dikes where they cut garnet-muscovite-chlorite schist. Quartz veinlets range from 1 inch to several feet thick and contain sparse calcite and pyrite as well as scheelite. One scheelite-bearing zone was 8 feet thick and at least 300 feet long. Tungsten content of the ores mined ranged from about 0.2 to 1.0 percent WO3, averaging about 0.43 percent WO3. Tourmaline and possibly some beryl are also present in the dikes.

Source of information: Stager and Tingley (1988, p. 43)

Field examination: J. V. Tingley, 1983

South Valley No. 4 claim (10)

Commodity: uranium

Location: sec. 1B, T15S, R70E

UTM 4057000N 763000E

Production: none

Development: small pit

Geology: Anomalous radioactivity occurs near the contact of a mica schist and a sandy shale in Precambrian metamorphic rocks.

Source of information: Garside (1973, p. 36)

Taglo mine (11)

Other names: Santa Cruz mine, Rising Star mine, and San Jose mine

Commodities: beryllium and mica

Location: secs. 3 and 10, T15S, R71E

UTM 4058800N 763100E

Production: none

Development: three adits and several open pits

Geology: Pegmatite dikes and sills generally follow foliation in Precambrian garnet-mica schist. The pegmatite bodies range in size from narrow lenticular pods a few inches across and several feet long to pods more than 8 feet wide and 350 feet long. Pegmatites occurring with smaller sills generally contain higher percentages of beryllium minerals. Ore minerals are beryl, chrysoberyl, and phenacite associated with muscovite, hematite, tourmaline, limonite, quartz, and albite.

Remarks: By estimate, the total amount of beryl and chrysoberyl in the ore does not exceed 1 percent; several hundred thousand tons of pegmatitic material, containing about 0.25 percent beryllium minerals, is estimated to be present.

Source of information: Beal (1965, p. 81–82)

Thanksgiving prospect (12)

Commodities: nickel, copper, and platinum

Location: sec. 29, T15S, R70E

UTM 4054600N 761750E

Production: none

Development: bulldozer cuts and discovery pit

Geology: Secondary copper and nickel minerals occur in altered and brecciated Precambrian biotite gneiss.

Source of information: Beal (1965, p. 80)

Virgin Mountain chrysoberyl mine (13)

Other names: Mica Notch deposits and Leavitt claims

Commodities: beryllium and mica

Location: secs. 17 and 18, T15S, R71E

UTM 4057600N 760450E
Tourmaline-bearing pegmatite dikes that cut Precambrian foliation directions in the schist. Whitney deposits near the Utah state line, several miles north of the East Mormon Mountains to the Arizona state line. The tungsten occurrence is associated with the pegmatite-amphibolite contact zones are composed of anhedral to subhedral andradite garnet intergrown with green to brown epidote and idocrase. Clots and stringers of scheelite and powellite also occur in the skarn. The quartz pegmatite also contains fine sprays and clots of molybdenite along with oxidized pyrite crystals. The pegmatite dikes strike N30°E and dip 30°NW.

Source of information: Stager and Tingley (1988, p. 106)

Field examination: J. Bentz and P. Smith, 1983

Meadow Valley Mountains

The Meadow Valley Mountains, Lincoln County, lie east of U.S. Highway 93 in the northwestern quarter of the quadrangle. This area is distant from other mining areas in the quadrangle and includes only two recorded mineral occurrences, a questionable gold-silver occurrence, and a uranium occurrence. Both occurrences are in Paleozoic limestone.

D and D occurrence (16)

Commodities: gold and silver(?)

Location: sec. 21(7), T11S, R64E

UTM 4093000N 691500E

Production: none

Development: none

Geology: Silicified, iron-stained limestone is exposed in a contact zone beneath a partially eroded, thick, canyon-filling rhyolite ash-flow tuff. Quartz veins occur in the silicified limestone. The margin of the rhyolite flow near the contact contains blue lehadronte crystals up to 1/4 inch long.

Remarks: Stream sediment samples taken from drainages in this general area were anomalous in base metals. The occurrence is only approximately located.

Source of information: Campbell (1987, p. 21, 27)

Fry and Jeffers occurrence (17)

Commodity: uranium

Location: secs. 6 and 7, T13S, R64E

UTM 4079000N 690500E

Production: none

Development: none

Geology: Slight radioactivity is associated with black Paleozoic limestone. No veins or geologic structures are associated with the occurrence.

Source of information: Campbell (1987, p. 27)

Mormon Mountains

The Mormon Mountains area, Lincoln County, located in the north central part of the quadrangle, includes all of the Mormon Mountains lying between the Lincoln County line and the northern boundary of the quadrangle. Most of this area, including the known mineral deposits, is within the proposed Mormon Mountains wilderness area. Known mineral occurrences include a copper-silver deposit at the Whitmore mine and a copper-silver prospect at Hackberry Springs. A few tons of ore was produced from the Whitmore mine in 1908 and is the only recorded production from the area. The copper-silver deposits occur in the lower plate of
a detachment fault that separates Paleozoic limestone from Precambrian granitic rocks.

Hackberry Spring prospect (18)

Commodities: copper and silver (?)
Location: sec. 1, T12S, R67E
UTM 4089800N 726000E
Production: none
Development: one prospect cut that may have been a short adit (now caved)
Geology: The prospect is located at the intersection of a N80°W-striking, 30°NE-dipping, brecciated quartzite and a N40°E-striking, 45°NW-dipping fault zone. The fault contains about 1½ feet of brecciated white quartz; the quartzite wall rock is also brecciated and iron-oxide stained. Cinnamon-brown and yellow-brown iron-oxide coatings are present on fracture surfaces. A massive, gray limestone with thin, shaly partings crops out immediately above the prospect. A trace amount of green copper-oxide minerals is present.
Field examination: J. V. Tingiey, 1987

Whitmore mine (19)

Other names: Bradfute copper mine; Anna Laura, Climax, and Stanley quartz claims
Commodities: copper and silver
Location: sec. 2, T12S, R67E
UTM 4089800N 726000E
Production: 19 tons ore, 4 ounces silver, and 2,621 pounds copper
History: The original three claims were located in 1899; D. Whitmore produced 19 tons ore from this property in 1908.
Development: four shallow shafts, three adits, several cuts, and prospect pits
Geology: Prospect cuts and shafts are along a N20°E-striking, 35°NW-dipping detachment fault that separates Paleozoic limestone (to the northwest in the upper plate) from altered, fractured, iron-stained granitic rock (to the southeast in the lower plate). The intrusive is laced with iron- and manganese-oxide stained fractures, some potassium feldspar, and quartz vein. The limestone above the fault zone is unaltered and unmineralized. The fault zone contains brecciated, recemented white vein quartz. The quartz displays iron-oxide-stained fault surfaces within it and contains angular fragments of pyrite, chalcopyrite, bornite, hematite, and malachite. The shafts and cuts explore about 200 feet of strike length; other small prospects occur about 1,500 feet to the southwest along strike. The intrusive is a medium- to coarse-grained granite with predominantly pink orthoclase. The granite is moderately silicified and is stained with hematite, forming an extensive outcrop of reddish rocks beneath the unaltered limestone. The fault zone is not well exposed but blocks of brecciated quartz up to 3 feet thick crop out along its trend; fragments of copper-mineralized vein up to 4 inches thick can be found on the dumps.
Remarks: Twenty-six samples were taken at the property by the U.S. Bureau of Mines (Shaw and others, 1988). Four samples had trace amounts of gold, eight had 0.1 to 0.6 ounces per ton silver, and all contained minor amounts of copper; one sample contained 3.6 percent copper.
Source of information: Shaw and others (1988, p. 4–5)
Field examination: J. V. Tingiey, 1987

NORTH MUDDY MOUNTAINS

The North Muddy Mountains area, Clark County, is in the south-central part of the quadrangle and occupies the area between Interstate Highway 15 and the lower Moapa Valley. Valley of Fire State Park extends through the center of this area; mineral occurrences lie to the east and west of the park along Weiser and Overton Ridges. Several uranium prospects and occurrences are found on Weiser and Overton ridges; one property is reported to have had small production.

The uranium occurrences are in the Jurassic Aztec Sandstone, sandstone of the Shinarump Member of the Triassic Chinle Formation, and limestone and conglomerate of the Tertiary Overton Conglomerate.

Carnotite No. 1 claim (20)

Other name: Perkins Brothers claim
Commodity: uranium
Location: sec. 20, T16S, R67E
UTM 4045200N 722200E
Production: none
Development: several pits and a shallow shaft
Geology: Very fine-grained carnitite occurs with carbonaceous trash as well as along a limestone-sandstone contact. The carnitite occurs in a zone up to 5 feet thick and 300 feet long. The rocks present at the prospect are part of a 58-foot-thick unnamed unit at the top of the Jurassic Aztec Sandstone, which presumably lies unconformably beneath the Cretaceous Willow Tank Formation.
Source of information: Garside (1973, p. 22)

Golden Glow and Carnotite Lode prospect (21)

Other names: Perkins Brothers claims and Overton property
Commodity: uranium
Location: sec. 16, T16S, R67E
UTM 4046800N 737000E
Production: small
Development: about 15 prospect pits
Geology: Carnitite occurs with opal and calcite along fractures in clays, conglomerates, and tuffaceous sandstones of the Overton Conglomerate.
Remarks: Some ore may have been produced but the amount is unknown. Samples from the prospect contained up to 0.045 percent U3O8.
Source of information: Garside (1973, p. 22–23)

Last Chance claim (22)

Commodity: uranium
Location: sec. 36, T15S, R66E
UTM 4051000N 719000E
Production: none
Development: many prospect pits
Geology: A shaly, jarosite-stained sandstone containing abundant carbonaceous trash is abnormally radioactive; sandstone is within the Shinarump Member of the Triassic Chinle Formation.
Source of information: Garside (1973, p. 22)

R.A.H. claims (23)

Commodity: uranium
Location: secs. 5 and 6, T15S, R67E
UTM 4058850N 722280E
Production: none
Development: prospect pits
Geology: Anomalous radioactivity is reported present in Tertiary sedimentary rocks, mainly limestones and conglomerates of the Overton Conglomerate.
Source of information: Garside (1973, p. 22)

Weiser anticline uranium occurrences (24)

Commodity: uranium
Location: sec. 35, T15S, R66E
UTM 4052000N 716000E
NONMETALLIC OCCURRENCES

ARROW CANYON RANGE

The Arrow Canyon Range, Clark County, lies east of U.S. Highway 93 in the southwestern quarter of the Overton 30' by 60' Quadrangle. Deposits of silica and building stone occur in localities along the east and west flanks of the southern part of the Arrow Canyon Range, and a clay prospect is located in Pahranagat Wash on the north end of the range. Two of the properties have had a small production of silica and quartzite. The deposits in the southern part of the range are in Paleozoic rocks; the clay deposit to the north occurs in Tertiary sedimentary rocks.

Jordan claims (1)
Commodity: limestone
Location: secs. 7 and 17, T16S, R64E
UTM 4047000N 692000E
Production: none
Development: bulldozer roads and prospect cuts
Geology: Paleozoic limestone
Field examination: J. V. Tingley, 1987

Quartzite quarry (2)
Other name: ONCO claims
Commodity: stone
Location: sec. 27, T15S, R63E
UTM 4052000N 687000E
Production: small
Development: quarry
Geology: The quarry is in Ordovician Eureka Quartzite.
Remarks: The material is used as a decorative stone.

Tiffany Minerals Co. quarry (3)
Other name: Tiffany mine
Commodity: silica
Location: sec. 18, T15S, R64E
UTM 4056850N 690840E
Production: small
History: The deposit was mined in the 1940's.
Development: Workings consist of an elliptically shaped bench 250 feet long and 135 feet wide, with a vertical face 35 to 40 feet high.
Geology: Mine workings are restricted to Ordovician Eureka Quartzite; quartzite is overlain on the west by limestone, dolomite, and shale. The formations strike slightly west of north and dip 25°E.
Remarks: Longwell and others (1965) thought the chemical and physical properties of the quartzite made it suitable for low-alumina silica refractories and metallurgical stone. Extreme hardness and abrasiveness of the rock resulted in such high preparation and maintenance costs that the operation was not economic.
Source of information: Murphy (1954, p. 5, 11-12); Longwell and others (1965, p. 163)
Field examination: J. Quade, 1988

BUNKERVILLE MINING DISTRICT

This district is described in the section on metallic occurrences.

Volcanic ash prospect (4)
Other name: Bentonite clay deposit
Commodity: clay
Location: sec. 33, T13S, R64E
UTM 4070500N 694000E
Production: none
Development: prospect pits
Geology: A bed of white bentonite, about 3 feet thick, is exposed for about 1 mile along strike in a bluff.
Source of information: Vanderburg (1937, p. 57)

Blue Beetle No. 1 lode claim (5)
Other name: Walker prospect
Commodity: fluorite
Location: sec. 24, T15S, R70E
UTM 4056470N 756970E
Production: none
Development: Workings consist of 125 feet of cross-cuts, 120 feet of drifts, and several trenches.

Geology: Minor amounts of fluorite are present in fissures in a pegmatite dike that cuts garnet-sillimanite-mica schist. The pegmatite dike dips steeply and strikes northeast; the fluorite-bearing fissures are up to 4 inches thick.

Sources of information: Beal (1965, p. 80); Papke (1979, p. 68)

Bunkerville Ridge gypsum prospect (6)
Commodity: gypsum
Location: sec. 36, T14S, R70E UTM 4062883N 765270E
Production: none
Development: minor trenching, one open cut

Geology: Gypsum and thin-bedded dolomite in the Permian Toroweap Formation are exposed for about 200 feet along strike. The beds trend N15° to 35°E and dip 50° to 60°NW. Limited exposures suggest the presence of a lower unit of gypsum and lesser interbedded dolomite, about 35 feet thick. Extensive outcrops of carbonate rocks a short distance southwest suggest that the gypsum-rich rocks terminate against a fault in this direction. The gypsum is white, massive, fine grained, and friable; except for dolomite interbeds, it is relatively pure. Small amounts of quartz and montmorillonite are present.

Source of information: Papke (1987, p. 6)

Mica Queen prospect (7)
Commodity: mica
Location: sec. 34, T15S, R71E UTM 4052500N 763700E
Production: none
Development: none

Geology: Quartz-feldspar pegmatite dikes with associated muscovite mica cut Precambrian gneiss.
Remarks: Location is only approximate; the prospect could not be located in the field.
Source of information: Hose and others (1981)

Field examination: J. V. Tingley, 1987

Taglo mine (8)
Other name: Santa Cruz mine
Commodities: mica and beryllium
Location: secs. 3 and 10, T15S, R71E UTM 4059950N 763190E
Production: none
Development: three adits and several open pits

Geology: Pegmatite dikes and sills follow the foliation direction in Precambrian garnet-mica schist. The pegmatite bodies range in size from narrow lenticular pods a few inches across and several feet long to pods more than 8 feet wide and 350 feet long. Pegmatite occurring as smaller sills generally contains higher percentages of beryllium minerals. Ore minerals are beryl, chrysoberyl, and phenacite associated with muscovite, hematite, tourmaline, limonite, quartz, and albite.
Remarks: By estimate, the total amount of beryl and chrysoberyl in the ore does not exceed 1 percent; several hundred thousand tons of pegmatitic material containing 0.25 percent beryllium minerals is estimated to be present.
Source of information: Beal (1965, p. 81-82)

Virgin Mountain chrysoberyl mine (9)
Other names: Mica Notch deposits and Leavitt claims
Commodities: mica and beryllium

Location: secs. 17 and 18, T15S, R71E UTM 4057600N 760450E
Production: small
History: Earliest work was done for mica in about 1900; some beryllium ore was produced in 1935.
Development: adits (now caved) and trenches

Geology: Muscovite mica occurs in pegmatite dikes associated with chrysoberyl, beryl, garnet, magnetite, and tourmaline. The dikes cut Precambrian garnet-mica schist; gneiss foliation trends northeast and dips southeast. The mica occurs in books up to several inches thick and 6 to 8 inches square. Specks of foreign material are present and it is not cleavable in large sheets (Vanderburg, 1937).
Sources of information: Vanderburg (1937, p. 19); Holmes (1964, p. 6); Beal (1965, p. 82-85)
Field examination: J. V. Tingley, 1983

Remains of mica screening facility, Mica Notch, Bunkerville district.

Virgin Mountains gypsum occurrence (10)
Commodity: gypsum
Location: secs. 13 and 14, T16S, R70E UTM 4048000N 758000E
Production: none
Development: none

Geology: Gypsum of Pennsylvanian and Permian age in the Pakoon Formation is very poorly exposed for about 1 mile in a northwesterly direction, mostly on the southerly slopes of a series of low hills and ridges. The unit, which strikes N50° to 60°W and dips 30° to 40°SW, has crudely measured thickness of 65 feet. The adjacent and interbedded rock is dolomite, but the extent and thickness of interbeds in the gypsum could not be determined. The gypsum-rich material is white, very fine grained, massive, and nonfriable.
Source of information: Papke (1987, p. 9)

GOURD SPRINGS MINING DISTRICT

Occurrences in this district include barite on the east side of the East Mormon Mountains and gypsum on the southwestern tip of these mountains. No production is reported from these occurrences. The barite occurrence is associated with tourmaline-bearing pegmatite dikes that cut
Percambrian amphibolite schist. The gypsum-bearing horizon occurs in a sequence of Permian rocks. More information on this district is given in the section on metallic occurrences.

Buckeye-Pennsylvania prospect (11)

Commodity: gypsum
Location: sec. 26, T12S, R66E
UTM 4083500N 736200E
Production: none
Development: Workings consist of a 70-foot-long cut at the top of the gypsum horizon and a 100-foot-long crosscut down-slope through the horizon.
Geology: The gypsum horizon, estimated to be 40 to 50 feet thick, occurs at the top of a section of Permian red beds. The beds are capped by the Permian Toroweap Formation. The gypsum is friable and is stained red with hematite toward its upper contact; the lower contact is not exposed. The beds strike N60°E and dip 45°SE into the slope of the hill.
Remarks: Cuts extend along strike for about 1,000 feet, and large pads have been built at the foot of the slope below the prospect cuts. This work is several years old.
Field examination: J. V. Tingley, 1987

Perkins barite prospect (12)

Commodity: barite
Location: sec. 20, T11S, R69E
UTM 4095020N 740420E
Production: none
Development: one 10-foot-deep prospect shaft inclined to follow dip of the vein
Geology: An iron-oxide-stained barite vein, approximately 2½ feet thick, occurs as a lenticular pod along the foliation direction of enclosing schist. The vein strikes N15°W, dips 5°SW. A pod of vein material exposed at the shaft collar extends about 3 feet down-dip, then tails out into several smaller veins, each 1 to 2 inches thick. Cross veinlets connect thin veins along both the hanging wall and the footwall of the structure. The small dump at the shaft collar is composed mostly of schist and coarse-grained, quartz-orthoclase-muscovite pegmatite containing some black tourmaline; the barite is associated with this pegmatite.
Source of information: Papke (1984, p. 104)
Field examination: J. V. Tingley, 1987

Snowbite prospect (13)

Commodity: gypsum
Location: sec. 19, T11S, R70E
UTM 4095000N 740000E
Production: none
Development: shallow cuts and pits
Geology: Gypsum of the Muddy Creek Formation is present at or near the surface in a 2½-square-mile area. The gyspite is flat-lying and caps low mesas dissected by stream beds typically about 20 feet deep. The western border of the area is Torquop Wash, a 100-foot-deep major drainage in this region. Poor exposures suggest a 5- to 6-foot maximum thickness of the gyspite. The gyspite is underlain by clays and silts, and is thin banded, very friable, and somewhat porous. The material is pale orange, fine grained, and contains variable amounts of quartz, calcite, and montmorillonite.

MORMON MOUNTAINS

A deposit of vermiculite occurs on the west flank of the Mormon Mountains. The vermiculite is related to pegmatite dikes that cut Precambrian schist. Additional information on this area is included in the section on metallic occurrences.

Vermiculite prospect (14)

Commodity: vermiculite
Location: sec. 24, T11S, R66E
UTM 4094465N 718185E
Production: none
Development: Workings consist of prospect pits and cuts that extend for about 100 feet along the outcrop strike.
Geology: Cuts expose a 30- to 40-foot-thick layer of altered biotite schist between two coarse-grained pegmatite dikes; dikes and schist foliation strike N60° to 70°E and dip from vertical to steeply southeast. The pegmatite dikes are composed of quartz, feldspar, and clots of mica; the thickest dike is about 1 foot thick.
Field examination: J. V. Tingley, 1987

NORTH MUDDY MOUNTAINS

Nonmetallic occurrences in this area include gypsum deposits on Weiser Ridge, magnesite deposits on Overton Ridge, and several silica sand pits near the town of Overton.
Sizeable amounts of gypsum and silica sand have been produced from the area. The magnesite deposits, while extensive, have produced only a small amount.
The largest gypsum deposits in the area occur in the Lower Permian Kaibab Formation but deposits have been mined in the Triassic Chinle Formation as well as the Tertiary Muddy Creek Formation. Magnesite in the area of Magnesite Wash on the east side of Overton Ridge occurs in the lower part of the Tertiary Horse Spring Formation. The silica sand deposits in the vicinity of Overton occur in eolian dune sand derived from nearby sandstone outcrops. More information on this area is given in the section on metallic occurrences.

Anderson gypsum deposit (15)

Other names: Rex deposit and January deposit
Commodity: gypsum
Location: sec. 31, T15S, R67E
UTM 4051160N 720000E
Production: 1,500 tons estimated
History: A small amount of gypsum was mined in 1917 and shipped to Los Angeles.
Development: Workings consist of a few shallow pits and an adit; most development is near the north end of the deposit.
Geology: A gypsum unit interbedded with shale crops out for a distance of 3 miles. The gypsum is within the Lower Triassic Chinle Formation. The gyspsiferous zone contains little or no anhydrite and contains minor montmorillonite and quartz. Exposures are best in the vicinity of an adit on the east side of a ridge in the SW¼ of section 31 where the gyspsiferous zone dips 85°SE and is about 60 feet thick. Elsewhere along strike the unit appears to be thinner—15 to 30 feet thick.
Remarks: The gypsum is of good quality, white with light gray streaks or vuggy pale red patches.
Source of information: Papke (1987, p. 8–9)
Gypsum prospects on the west side of the North Muddy Mountains. J. Quade photo.
Development: large open pit, mill, and dryer
Geology: The deposit consists of eolian dune sand derived from the Aztec and Baseline Sandstones.
Sources of information: Murphy (1954, p. 6); Longwell and others (1965, p. 209)

Snoreen & Son Co. pit (21)
Commodity: silica sand
Location: sec. 36, T16S, R67E
UTM 4042500N 728850E
Production: 54,000 tons of dune sand annually (Longwell and others, 1965)
Development: open pit
Geology: The deposit consists of eolian dune sand derived from the Aztec and Baseline Sandstones.
Sources of information: Longwell and others (1965, p. 209; Murphy (1954, p. 6)

White Star mine (22)
Commodity: gypsum
Location: sec. 2, T15S, R67E
UTM 4059400N 716780E
Production: small
History: White Star Plaster Co. produced plaster from 1919 to 1923 at a mill near this deposit; gypsite from this deposit was used for the first two years, then the gypsum supply came from White Star No. 2 mine, 2 miles southeast.
Development: Two small pits are visible; the largest is about 75 feet in diameter.
Geology: Gypsite, presumed to be part of the Muddy Creek Formation, is present in uneroded parts of an old pediment bounded on the west by Interstate 15 and on the east by hills composed of older rocks. The outcrop area has an elongated wedge shape 500 feet wide at the southern base and about 4,000 feet long north-south, extending northward beyond the Union Pacific railroad track. The flat-lying gypsite cap ranges from a few feet to more than 20 feet thick and is underlain by clays and silts. The gypsite is very pale orange, fine grained, and somewhat porous and friable. Varying amounts of montmorillonite, illite, and quartz are the principal impurities.
Source of information: Papke (1987, p. 7)

White Star No. 2 mine (23)
Commodity: gypsum
Location: sec. 18, T15S, R67E
UTM 4056940N 719725E
Production: estimated in excess of 100,000 tons
Development: Surface workings consist of three shallow open pits that cover most of the 1,500-foot exposed strike length of the deposit; inclined open stopes starting from these pits extend about 100 feet down-dip.
Geology: The gypsite apparently is part of the Lower Permian Kaibab Formation. The principal unit, mined in the open-pit and underground workings, is estimated to be 25 to 30 feet thick. Its strike is somewhat varied but overall is nearly north-south; dips are 15° to 30°E. The footwall rock, seldom exposed, is a light-red sandstone with some gypsum veinlets. The immediate hanging wall is a light-brown gypsiferous sandstone; a gypsum bed near the top of this sequence was mined in a few small open stopes. The hanging-wall...
contact of the main gypsum unit generally is sharp and regular to slightly undulating; in many places, however, fractures in the upper part of the gypsum unit change attitude as they approach this contact. This attitude change is possibly due to drag—the contact may be a fault with sandstone moving up-dip over the gypsum. The gypsum is laminated to very thin bedded, it is white to grayish orange pink, often mottled. The material is fairly pure; small amounts of quartz and montmorillonite and a trace of anhydrite are present.Remarks: Recovery of material from the underground workings was about 50 percent. This deposit was the source of material for the White Star plaster plant, 2 miles to the northwest, from 1921 until the plant closed in 1923.
Source of information: Pepke (1987, p. 7-8)

GEOTHERMAL OCCURRENCES

Within the Overton 30’ by 60’ Quadrangle, geothermal water is found in several areas in Moapa Valley and in one area in Virgin Valley. These areas are all within Clark County.

In Moapa Valley, warm water from springs and wells at the head of the Muddy River have been used for bathing and irrigation for many years. One of these occurrences, Muddy River Springs, is the largest thermal spring in Nevada. In the lower Moapa Valley, warm water is reported from wells near the towns of Logandale and Overton. In Virgin Valley, near the town of Bunkerville, warm water occurs in several irrigation wells.

MOAPA VALLEY

Clarence Lewis well (1)
Location: sec. 8, T14S, R65E
UTM 4067800N 702200E
Development: three wells show on map in this area
Depth: 57.5 feet
Temperature: 27°C
Remarks: flowing well
Source of information: Garside and Schilling (1979, p. 85, no. 25)

Moapa Warm Springs (2)
Other name: Iverson’s Warm Springs
Location: sec. 16, T14S, R65E
UTM 4064900N 704150E
Temperature: 32°C
Remarks: several springs, water used for bathing and irrigation
Source of information: Garside and Schilling (1979, p. 86, no. 25)

Muddy River Springs (3)
Location: sec. 16, T14S, R65E
UTM 4066300N 704000E
Temperature: 32°C
Remarks: largest thermal spring in Nevada
Source of information: Garside and Schilling (1979, p. 85, no. 25)

Paterson Spring (4)
Other name: Pederson Spring
Location: sec. 16, T14S, R65E
UTM 4066100N 703000E
Temperature: 32°C
Source of information: Garside and Schilling (1979, p. 88, no. 25)

Unnamed spring 1 (5)
Location: sec. 16, T14S, R65E
UTM 4065900N 703800
Temperature: 32°C
Remarks: several springs, water used for bathing
Source of information: Garside and Schilling (1979, p. 85, no. 25)

Unnamed spring 2 (6)
Location: sec. 1, T16S, R67E
UTM 4049600N 728700E
Temperature: 21°C
Remarks: seep
Source of information: Garside and Schilling (1979, p. 86, no. 29)

Unnamed well 1 (7)
Location: sec. 15, T14S, R65E
UTM 4065100N 704600E
Temperature: 32°C
Source of information: Garside and Schilling (1979, p. 85, no. 25)

Unnamed well 2 (8)
Location: sec. 9, T14S, R65E
UTM 4066800N 704000E
Development: Two wells are shown on the map in this area.
Temperature: 32°C
Source of information: Garside and Schilling (1979, p. 86, no. 25)

Woodruff and Perkins well (9)
Location: sec. 8, T14S, R65E
UTM 4067400N 702100E
Development: Two wells are shown on the map in this area.
Temperature: 28°C
Remarks: open dug well, flowing
Source of information: Garside and Schilling (1979, p. 85, no. 25)

W. Wipple well (10)
Location: sec. 34, T15S, R67E
UTM 4052300N 725400E
Depth: 87 feet
Temperature: 24°C
Remarks: location questionable
Source of information: Garside and Schilling (1979, p. 86, no. 26)

VIRGIN VALLEY

Bruna Blasi well (11)
Location: sec. 34, T13S, R70E
UTM 4071520N 753780E
Depth: 118 feet
Temperature: 21°C
Source of information: Garside and Schilling (1979, p. 85, no. 24)

Bunkerville Water Users Assoc. well (12)
Location: sec. 35, T13S, R70E
UTM 4071220N 758940E
Depth: 300 feet
Temperature: 25°C
Source of information: Garside and Schilling (1979, p. 85, no. 24)
Hafen Dairy well [13]
Location: sec. 13, T13S, R70E
UTM 4076100N 757680E
Depth: 80 feet
Temperature: 21°C
Source of information: Garside and Schilling (1979, p. 85, no. 24)

Mesquite Farmstead Water Assoc. well (14)
Location: sec. 29, T13S, R71E
UTM 4074400N 759820E
Depth: 225 feet
Temperature: 21°C
Source of information: Garside and Schilling (1979, p. 85, no. 24)

Mesquite Farmstead well (15)
Location: sec. 20, T13S, R71E
UTM 4074400N 759660E
Development: two wells shown in this area on map
Depth: 210 feet
Temperature: 23°C
Source of information: Garside and Schilling (1979, p. 85, no. 24)

Unnamed well 1 (16)
Location: sec. 35, T13S, R70E
UTM 4071300N 754860E
Depth: 300 feet
Temperature: 24°C
Source of information: Garside and Schilling (1979, p. 85, no. 24)

BIBLIOGRAPHY

Lindgren, W., and Davy, W. M., 1924, Nickel ores from the Key West mine, Nevada: Economic Geology, v. 19, no. 4, p. 309-319.

<table>
<thead>
<tr>
<th>District/area</th>
<th>Occurrence (no.)</th>
<th>Sample no.</th>
<th>UTM</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bunkerville</td>
<td>Black Ridge prospects (1)</td>
<td>3195</td>
<td>4051740N 745680E</td>
<td>White pegmatite and vein quartz, clots of iron oxide, minor copper-oxide staining</td>
</tr>
<tr>
<td></td>
<td>Blue Bell prospect (2)</td>
<td>3193</td>
<td>4057350N 754280E</td>
<td>Coarse-grained quartz-feldspar pegmatite; clots of black mica, black tourmaline, copper-oxide staining on quartz</td>
</tr>
<tr>
<td></td>
<td>Great Eastern mine (3)</td>
<td>1167</td>
<td>4056900N 754300E</td>
<td>Basic dike material, magnetic, micaceous, abundant slickensides</td>
</tr>
<tr>
<td></td>
<td>Hodges-Whorton mine (4)</td>
<td>3194</td>
<td>4055360N 745590E</td>
<td>Vitreous white vein quartz, limonite staining, sparse crystals of scheelite</td>
</tr>
<tr>
<td></td>
<td>Key West mine (6)</td>
<td>1166A</td>
<td>4056100N 753550E</td>
<td>Highly altered material from shear zone; surface coatings of chrysocolla, brochantite, malachite, iron and manganese oxides; wall rock highly fractured micaceous schist and hornfels</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1166B</td>
<td>4056100N 753550E</td>
<td>Gossan, earthy iron oxides, boxworks, minor copper-oxide staining on surfaces</td>
</tr>
<tr>
<td></td>
<td>Ranch View prospects (7)</td>
<td>3191</td>
<td>4046300N 763490E</td>
<td>Vuggy, white vein quartz, iron-oxide gossan in vugs, some specular hematite</td>
</tr>
<tr>
<td></td>
<td>Silver Leaf mine (9)</td>
<td>1401</td>
<td>4058200N 761420E</td>
<td>White vein quartz in pegmatite with muscovite, scheelite, huebnerite, pyrite; dump sample from upper adits</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1402</td>
<td>4058420N 761700E</td>
<td>Vein quartz from pegmatite in schist, trace scheelite; dump sample from lower adits</td>
</tr>
<tr>
<td></td>
<td>Whitney Pass prospect (14)</td>
<td>3192</td>
<td>4046880N 762550E</td>
<td>Hematite-stained white vein quartz, malachite crusts on fractures and in vugs, clear fluorite in vugs</td>
</tr>
<tr>
<td>Gourd Springs</td>
<td>Bruson prospect (15)</td>
<td>1449</td>
<td>4090275N 741700E</td>
<td>Skarn, anhedral to subhedral andradite garnet intergrown with pale-green to brown epidote, vesuvianite, clots and stringers rose to white quartz, scheelite, surfaces coated with minor calcite and iron and manganese oxides</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1450</td>
<td>4090280N 741685E</td>
<td>Massive white vein quartz, sprays and clots molybdenite, fine pyrite, clots oxidized pyrite, iron-oxide coatings on surfaces</td>
</tr>
<tr>
<td></td>
<td>Perkins barite prospect (12)</td>
<td>3188</td>
<td>4095020N 740420E</td>
<td>Massive white vein barite, bladed barite crystals, black tourmaline present, vein is iron- and copper-oxide stained</td>
</tr>
<tr>
<td>Mormon Mountains</td>
<td>Hackberry Spring prospect (18)</td>
<td>3196</td>
<td>4088420N 728160E</td>
<td>Brecciated, milk-white vein quartz, yellow-brown iron-oxide coatings, trace copper-oxide staining</td>
</tr>
<tr>
<td></td>
<td>Whitmore mine (19)</td>
<td>3189</td>
<td>4089600N 726800E</td>
<td>White vein quartz with clots of chalcopyrite, pyrite, bornite, hematite; vein is stained with iron and copper oxides</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3190</td>
<td>4089500N 726800E</td>
<td>Iron-oxide stained, fractured granite, quartz veining, pink K-feldspar, moderately kaolinitized</td>
</tr>
<tr>
<td>Disturbance</td>
<td>Occurrence no.</td>
<td>Sample no.</td>
<td>Co</td>
<td>Ca</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------------</td>
<td>------------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Banksville</td>
<td></td>
<td>3195</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Blue Bell prospect</td>
<td></td>
<td>3193</td>
<td>0.5</td>
<td>0.7</td>
</tr>
<tr>
<td>Great Eastern mine</td>
<td></td>
<td>1167</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>Hodges-Wooster mine</td>
<td></td>
<td>3194</td>
<td>0.7</td>
<td>0.2</td>
</tr>
<tr>
<td>Key West Mine (6)</td>
<td></td>
<td>11664</td>
<td>0.7</td>
<td>3</td>
</tr>
<tr>
<td>Ranch View prospect</td>
<td></td>
<td>3191</td>
<td>0.05</td>
<td>0.5</td>
</tr>
<tr>
<td>Silver Leaf mine (9)</td>
<td></td>
<td>1401</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Whitmore mine (13)</td>
<td></td>
<td>3198</td>
<td>5</td>
<td>0.9</td>
</tr>
<tr>
<td>Whitmore mine (13)</td>
<td></td>
<td>3190</td>
<td>0.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Spectrographic analyses (columns headed by element symbol) and atomic absorption analyses (columns headed by AA -- element symbol) by the Branch of Geochemistry, U.S. Geological Survey, Denver, Colorado. Co, No, Mg, Na, and Ti values are in percent; all others are in ppm. Detection limit is under element symbol. L = less than detection limit. N = not detected. — = not tested.
INDEX

(mining districts, mining areas, mines, prospects, and occurrences)

Anderson gypsum deposit 9
Anna Laura quartz claim 6
Arrow Canyon Range 1, 7
Bentonite clay deposit 7
Black Ridge prospects 2, 15, 16
Blue Beetle No. 1 lode claim 7
Blue Bell prospect 3, 15, 16
Bradfute copper mine 6
Bruna Biesi well 12
Bruson prospect 5, 15, 16
Buckeye-Pennsylvania prospect 9
Bunkerville mining district 2, 7, 15, 16
Bunkerville Ridge gypsum prospect 8
Bunkerville Water Users Assoc. well 12
Cabin Canyon mine 4
Carnotite No. 1 claim 6
Clarence Lewis well 12
Climax quartz claim 6
Copper King (Bunkerville) district 1
D and D occurrence 5
Dear Trail mine 4
Fry and Jeffers occurrence 5
Georgia Pacific gypsum quarry 10
Glendale claim 10
Golden Glow and Carnotite Lode prospect 6
Gourd Springs mining district 5, 8, 15, 16
Great Eastern mine 1, 3, 15, 16
Gypsum prospect 1, North Muddy Mountains 10
Heckberry Spring prospect 5, 6, 15, 16
Halen Dairy well 13
Hodges-Wharton mine 3, 15, 16
Iverson's Warm Springs 12
January deposit 9
Jordan claims 7
Kathleen prospect 3
Key West mine 1, 3, 15, 16
Last Chance claim 6
Leavitt claims 8
Macbruson claims 5
Meadow Valley Mountains 5
Mesquite Farmstead Water Assoc. well 13
Mesquite Farmstead well 13
Mesquite mine 4
Mica Notch deposits 8
Mica Queen prospect 8
Moapa Valley 2, 12
Moapa Warm Springs 12
Mormon Mountains 1, 5, 9, 15, 16
Muddy River Springs 12
Muddy Valley magnesite occurrences 10
North Muddy Mountains 6, 9
ONCO claims 7
Overton property 6
Overton Ridge magnesite deposits 10
Pederson Spring 12
Perkins barite prospect 9, 15, 16
Perkins Brothers claim 6
Perkins Brothers claims 6
Peterson Spring 12
Quartzite quarry 7
R.A.H. claims 6
Ranch View prospects 4, 15, 16
Red Gorge pit 10
Rex deposit 9
Rising Star mine 4
Roadside prospect 4
San Jose mine 4
Santa Cruz mine 4, 8
Silver Leaf mine 4, 15, 16
Silver mine 4
Simploit Silica Products pit 10
Sncreen & Son Co. pit 11
Snowwhite prospect 9
South Valley No. 4 claim 4
Stanley quartz claim 6
Taglio mine 4, 8
Thanksgiving prospect 4
Tiffany mine 1, 7
Tiffany Minerals Co. quarry 7
Tri-State mine 4
Unnamed spring 1, Moapa Valley 12
Unnamed spring 2, Moapa Valley 12
Unnamed well 1, Moapa Valley 12
Unnamed well 1, Virgin Valley 13
Unnamed well 2, Moapa Valley 12
Vermiculite prospect 9
Virgin Mountain chrysoberyl mine 4, 8
Virgin Mountains gypsum occurrence 8
Virgin Valley 2, 12
Volcanic ash prospect 7
W. Wipple well 12
Walker mine 4
Walker prospect 7
Weiser antcline uranium occurrences 6
Weiser Ridge gypsum prospect 10
West Coast Silica Co. pit 10
White Star mine 11
White Star No. 2 mine 11
Whitmore copper deposit 1
Whitmore mine 2, 5, 6, 15, 16
Whitney Pass prospect 5, 15, 16
Woodruff and Perkins well 12
Index of USGS 7½’ and 15’ quadrangle maps within the Overton 30’ by 60’ Quadrangle.
MINERAL RESOURCES OF THE
OVERTON 30' BY 60' QUADRANGLE
The Nevada Bureau of Mines and Geology is part of the Mackay School of Mines at the University of Nevada-Reno and is the state geological survey. Scientists at the Nevada Bureau of Mines and Geology conduct research and publish reports on mineral resources and various aspects of general, environmental, and engineering geology.

Current activities in mineral resources and general geology include detailed geologic mapping and stratigraphic studies in Nevada; comparative studies of bulk mineable precious-metal deposits, geochemical investigations of mining districts, resource assessments, igneous petrologic studies, hydrothermal experiments, research on the origin of hydrothermal platinum-group element occurrences, and examination of the origin and distribution of borate deposits in Nevada.

Environmental, engineering, and urban geology projects include investigations of earthquake hazards and related aspects of neotectonics; examination of issues involved in siting nuclear and hazardous wastes; mapping of geomorphic features, radon hazard studies, and studies of landslide hazards.

Geologic information activities include creating and updating databases on mining districts, active mines and prospects, and geothermal and petroleum exploration and production; implementation and development of statewide geographic information systems; and maintenance of core and cuttings facilities, rock and mineral collections for research, aerial photographic imagery and maps, and extensive files on Nevada geology and resources.

The Nevada Bureau of Mines and Geology cooperates with numerous state and federal agencies in providing geologic and resource information and in conducting research. Research results are published as Nevada Bureau of Mines and Geology bulletins, reports, maps, and special publications as well as in federal publications and scientific journals. In addition to addressing the needs for geologic information by conducting research, publishing reports and maps, and creating computer databases, staff members assist the public, industry, and government agencies by answering specific questions regarding Nevada geology and resources and by providing some chemical and mineralogical analyses.

Individuals interested in the state's geology are encouraged to visit or write the Nevada Bureau of Mines and Geology or call (702) 784-6691. NBMG offices are located in the west wing of the Scruggs Engineering-Mines Building on the University of Nevada-Reno campus. When visiting NBMG by car please stop at the information booth just inside the Center Street entrance on the south end of the UNR campus. The attendant will issue you a temporary parking permit and give you directions to parking areas and the NBMG offices. Address mail to: Director/State Geologist, Nevada Bureau of Mines and Geology, University of Nevada-Reno, Reno, NV 89557-0088. A publication list will be sent upon request.